Here is an example of how you might implement sensor fusion for drones in C++ using a Kalman filter:
#include <iostream>
#include <cstdlib>
#include <vector>
#define NUM_SENSORS 3 // Number of sensors being used
struct SensorData {
double value; // Sensor measurement value
double uncertainty; // Uncertainty of the measurement
};
// Kalman filter function
// Takes a vector of SensorData structures as input and returns a fused measurement value
double KalmanFilter(std::vector<SensorData> sensorData) {
double fusedValue = 0.0; // Fused measurement value
double fusedUncertainty = 0.0; // Fused measurement uncertainty
// Iterate over each sensor
for (int i = 0; i < NUM_SENSORS; i++) {
double sensorValue = sensorData[i].value;
double sensorUncertainty = sensorData[i].uncertainty;
// Calculate the Kalman gain
double gain = sensorUncertainty / (sensorUncertainty + fusedUncertainty);
// Update the fused value and uncertainty
fusedValue = fusedValue + gain * (sensorValue - fusedValue);
fusedUncertainty = (1 - gain) * fusedUncertainty;
}
return fusedValue;
}
int main() {
std::vector<SensorData> sensorData(NUM_SENSORS);
// Get data from each sensor
// (assume this is done using some other function or hardware)
sensorData[0].value = 10.0;
sensorData[0].uncertainty = 1.0;
sensorData[1].value = 11.0;
sensorData[1].uncertainty = 1.5;
sensorData[2].value = 9.0;
sensorData[2].uncertainty = 0.5;
// Fuse the sensor data using the Kalman filter
double fusedValue = KalmanFilter(sensorData);
std::cout << "Fused value: " << fusedValue << std::endl;
return 0;
}
This code defines a SensorData struct to represent a sensor measurement, and a function called KalmanFilter() that takes a vector of SensorData structures as input and returns a fused measurement value using a Kalman filter.
In the main function, data is retrieved from each sensor (assumed to be done using some other function or hardware). Then, the KalmanFilter() function is called to fuse the data from all three sensors. The fused value is then output to the console.